Reconstruction of 3D Human Facial Images Using Partial Differential Equations
نویسندگان
چکیده
One of the challenging problems in geometric modeling and computer graphics is the construction of realistic human facial geometry. Such geometry are essential for a wide range of applications, such as 3D face recognition, virtual reality applications, facial expression simulation and computer based plastic surgery application. This paper addresses a method for the construction of 3D geometry of human faces based on the use of Elliptic Partial Differential Equations (PDE). Here the geometry corresponding to a human face is treated as a set of surface patches, whereby each surface patch is represented using four boundary curves in the 3-space that formulate the appropriate boundary conditions for the chosen PDE. These boundary curves are extracted automatically using 3D data of human faces obtained using a 3D scanner. The solution of the PDE generates a continuous single surface patch describing the geometry of the original scanned data. In this study, through a number of experimental verifications we have shown the efficiency of the PDE based method for 3D facial surface reconstruction using scan data. In addition to this, we also show that our approach provides an efficient way of facial representation using a small set of parameters that could be utilized for efficient facial data storage and verification purposes.
منابع مشابه
Image Zooming using Non-linear Partial Differential Equation
The main issue in any image zooming techniques is to preserve the structure of the zoomed image. The zoomed image may suffer from the discontinuities in the soft regions and edges; it may contain artifacts, such as image blurring and blocky, and staircase effects. This paper presents a novel image zooming technique using Partial Differential Equations (PDEs). It combines a non-linear Fourth-ord...
متن کاملPerspective Photometric Stereo with Shadows
High resolution reconstruction of 3D surfaces from images remains an active area of research since most of the methods in use are based on practical assumptions that limit their applicability. Furthermore, an additional complication in all active illumination 3D reconstruction methods is the presence of shadows, whose presence cause loss of information in the image data. We present an approach ...
متن کاملSimulation of Singular Fourth- Order Partial Differential Equations Using the Fourier Transform Combined With Variational Iteration Method
In this paper, we present a comparative study between the modified variational iteration method (MVIM) and a hybrid of Fourier transform and variational iteration method (FTVIM). The study outlines the efficiencyand convergence of the two methods. The analysis is illustrated by investigating four singular partial differential equations with variable coefficients. The solution of singular partia...
متن کاملOn The Simulation of Partial Differential Equations Using the Hybrid of Fourier Transform and Homotopy Perturbation Method
In the present work, a hybrid of Fourier transform and homotopy perturbation method is developed for solving the non-homogeneous partial differential equations with variable coefficients. The Fourier transform is employed with combination of homotopy perturbation method (HPM), the so called Fourier transform homotopy perturbation method (FTHPM) to solve the partial differential equations. The c...
متن کاملFace Detection and 3D Face Reconstruction
A fully automated 3D face reconstruction system for faces in 2D images is presented. It is implemented incorporating a method for facial feature detection into the initialization of the 3D face reconstruction process provided by Blanz et al.[2][3]. The initialization of that method takes alignments of previously selected facial feature points with their according vertices in the 3D face model. ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- JCP
دوره 2 شماره
صفحات -
تاریخ انتشار 2007